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Abstract—Maintaining an asset with life-limited parts, e.g., a jet
engine or an electric generator, may be costly. Certain costs, e.g.,
setup cost, can be shared if some parts of the asset are replaced
jointly. Reducing the maintenance cost by good joint replacement
policies is difficult in view of complicate asset dynamics, large
problem sizes and the irregular optimal policy structures. This
paper addresses these difficulties by using a rollout optimization
framework. Based on a novel application of time-aggregated
Markov decision processes, the “One-Stage Analysis” method
is first developed. The policies obtained from the method are
investigated and their effectiveness is demonstrated by examples.
This method and the existing threshold method are then improved
by the “rollout algorithm” for the total cost case and the average
cost case. Based on ordinal optimization, it is shown that excessive
simulations are not necessary for the rollout algorithm. Numerical
testing demonstrates that the policies obtained by the rollout
algorithms with either the “One-Stage Analysis” or the threshold
method significantly outperform traditional threshold policies.

Note to Practitioners—Maintaining an asset with life-limited
parts, e.g., a jet engine or an electric generator, over its lifetime may
be costly. Optimizing maintenance policies, however, is difficult
because of complicated asset dynamics, large problem sizes, and
irregular optimal policy structures. This paper addresses the
problem by a rollout optimization framework. In this framework,
the “One-Stage Analysis” method, which minimizes the expected
average cost over one maintenance period, is first developed and
investigated. The policies, obtained by either the “One-Stage
Analysis” method or the existing threshold method, are used in
simulation to evaluate and select good actions. Similar to those
learning approaches, this simulation-based framework is flexible
for variant performance criteria, e.g., total cost or average cost, and
is applicable to problems without explicit mathematical models.
Numerical results demonstrate that effective policies can be ob-
tained by the rollout framework in a computationally efficient way
and they significantly outperform traditional threshold policies.

Index Terms—Joint replacement, Markov decision processes,
multipart maintenance, rollout algorithm, time aggregation.
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I. INTRODUCTION

A COMPANY, e.g., an airline or a power company, needs
to maintain its assets, e.g., jet engines or electric genera-

tors, during their lifetimes for reliable and sustained services.
Such an asset is generally composed of several modules and
each module in turn consists of many parts. A few of the parts
are safety-critical, i.e., their failures or malfunctions may lead
to disastrous consequences. For safety and reliability purposes,
each of such parts is life-limited by “policy.” Such a life limit
is set at a point where exceeding the limit increases the condi-
tional probability of failure, even though a part may still have ac-
tual remaining life. An asset has a maintenance shop visit when
a life-limited part reaches its life limit. Moreover, accidents or
failures of those nonsafety critical parts may warrant a mainte-
nance visit. A shop visit leads to a fixed cost and variable costs.
The fixed cost, i.e., setup cost, includes costs such as downtime,
inspection, transportation of the asset, etc. Variable costs consist
of module removal costs and new part costs. Since parts are in-
stalled in modules, replacing a part from an inner module may
need to remove outer modules first. Thus the replacements of
parts are coupled by module removal costs and the setup cost
through structural dependence and economic dependence [8].
Maintaining an asset may be expensive, e.g., millions of dol-
lars for maintaining a jet engine over several years [2]. If some
parts are replaced jointly at the same shop visit, the setup cost
and module removal costs can be shared and saved. In addition,
an asset can operate longer until its next shop visit. However,
jointly replacing the unexpired parts incurs more costs on new
parts. Therefore, a good maintenance policy is to balance the
setup cost, module removal costs and part costs.

Reducing the maintenance cost by good joint replacement
policies is important for asset owners as well as for maintenance
service providers. However, optimizing such policies is difficult
because of complicate asset dynamics, large problem sizes and
irregular optimal policy structures.

1) The asset dynamics are complicated and involve random
failures of the asset. This makes it hard to evaluate a re-
placement decision or policy in a close form. Monte Carlo
simulation may be the only way.

2) The number of part remaining life combinations increases
exponentially with the number of parts and the part full
lifetimes. For practical problems, an asset may have tens
of safety-critical parts with full lifetimes ranging from tens
to hundreds.

3) Similar to those joint replacement problems in the litera-
ture, the structures of optimal policies are quite irregular
and have no simple form as the generally used threshold
policies [15]. Therefore, it is difficult to describe and find
an optimal policy.
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The key features of our problem are life-limited parts and
random asset-wise failures. As will be reviewed in Section II,
most problems in the literature model failures of parts which are
not life-limited. Our problem is formulated as a Markov deci-
sion process (MDP) in Section III with two widely used criteria:
total cost and long-run average cost. In Section IV, the time
aggregated approach for Markov decision processes is devel-
oped [4]. The application provides a novel view of maintenance
problems and simplifies the analysis as well as the computation.
Although time aggregation still cannot solve large problems, it
helps to develop the “One-Stage Analysis” (OSA) method. The
method approximates optimal policies by minimizing the ex-
pected average cost over one maintenance period. The policies
obtained by this method are proved to preserve some properties
of optimal policies. The performance bounds of OSA obtained
for single-part problems show that the method performs well
when the failure rate or the ratio of part cost to setup cost is low.
Such properties are also demonstrated by examples for multi-
part problems.

To improve the policies obtained by OSA or the ex-
isting threshold method, the rollout algorithm is presented in
Section V. The paper reveals that the idea of the rollout algo-
rithm, i.e., evaluating feasible replacement actions via repeated
simulations to select the best one, is consistent with ordinal
optimization [11]: using crude model and performing ordinal
comparison. Thus there is no need to perform excessive Monte
Carlo simulations. Numerical results in Section VI demonstrate
that OSA is an effective heuristic method compared with the
widely used threshold method. The efficient OSA may be used
if the problem is very large and CPU time is quite limited.
Given more CPU time, the rollout algorithm improves OSA
or the threshold method under both total cost and average cost
criteria. This is demonstrated by a semi-realistic data set under
variant parameter settings.

II. LITERATURE REVIEW

Modeling and optimizing the maintenance of multipart sys-
tems have attracted much interest over the past two decades as
surveyed in [7], [8], and [21]. In this section, we will review
traditional problems and methods, and then summarize related
works on our problem. The problems in the literature concen-
trate on part-wise failures and the failure rates of parts increase
with lifetimes [21]. A part must be replaced when it fails. The
maintenance policies fall into several categories, e.g., corrective,
preventive and opportunistic. Corrective maintenance is con-
ducted only when a part breaks down. For preventive mainte-
nance, inspections, replacements and part revisions are carried
out to prevent failures. Corrective and preventive maintenance
on a part may yield an opportunity for maintaining other parts.
In this way, opportunistic maintenance saves costs by economy
of scale.

For multipart systems, joint replacement is a result of oppor-
tunistic maintenance to reduce the cost. It can be “group replace-
ment” [21], for which certain parts are replaced together. The
basic group replacement policy is the -age group replacement
policy. It calls for a group replacement if the age of the group is

, which is generally a predetermined constant. Another “base
interval approach” [12] is to find a “base interval” such that the

system is maintained at every base interval, and a part is re-
placed at some multiples of the base interval. To deal with the
combinatorial difficulties caused by the couplings of parts, de-
composition and coordination heuristics are explored by using
Markov decision processes in [9] and [22]. In [9], the optimal
replacement time of each part is first obtained without consid-
ering other parts. Then the replacement of multiple parts is co-
ordinated based on the value functions of the MDP approach in
a heuristic way.

Most of the above methods, when applied, result in threshold
(or control limit) type policies. Such policies replace a part
whose lifetime has exceeded a predefined threshold [21]. The
optimal policies for problems with a single part are of the
threshold type [20]. However, for general multipart problems,
the optimal replacement policies may have irregular structures
and are difficult to obtain [15]. Threshold policies are neverthe-
less still widely used in practice for their simplicity and easy
implementation [20]. For example, the threshold method (or
the fixed-threshold method [10]) employs a common threshold
for all the parts. This common threshold can be optimized by
exhaust search. As a generalization, the multithreshold method
of [14] has different thresholds for different parts. However,
these different thresholds may not be easily optimized because
there may be too many threshold combinations for problems
with many parts and large full lifetimes. For the models in
the literature, minimizing the total cost ([9] and [19]) has not
been widely investigated as compared with minimizing the
long-run average cost because the nonstationary nature of the
optimal policies makes it difficult to analyze the structures
of the optimal policies. More information can be obtained in
surveys [7], [8], and [21].

Our problem is motivated by maintaining a jet engine and
is safety-critical part oriented. A safety-critical part must be
replaced after its predefined lifetime runs out for high reliability
purpose. Such parts are assumed to be reliable and do not fail,
while there are random asset-wise failures. As will be pointed
out in Section III-D, this may lead to multichain Markov deci-
sion processes, which are more complicated than the unichain
cases in the literature. Despite of above differences, our model
shares similar difficulties with existing models as summarized
in Section I. Moreover, the generally used threshold method in
the literature is also a heuristic method for our problem. The
features of optimal policies are investigated in [15]. Lagrangian
relaxation approach is presented based on a new separable
problem formulation in [19].

III. PROBLEM FORMULATION

This section formulates the multipart maintenance problem
introduced in Section I as a Markov decision process. As as-
sumed in the literature, the maintenance durations are negli-
gible and not considered. For safety and reliability purposes, a
safety-critical part is life limited and must be replaced after a
predefined lifetime. New parts are assumed available whenever
they are needed and the inventory is not an issue here. In the
following, the system state is described by the remaining lives
of the parts and a variable representing the random asset failure.
The state evolves according to asset dynamics. After exploring
the cost structures, two minimization criteria are considered: the
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Fig. 1. Asset illustrated by a Pratt and Whitney PW4000 94-in jet engine.
(Image available at http://www.pratt-whitney.com.)

average cost in a long time and the total cost over a maintenance
horizon.

A. Asset States and Uncertainties

An asset as illustrated by a jet engine in Fig. 1 is composed
of modules. Module consists of many parts, and among
them, parts are safety-critical. The replacement policy of
safety-critical parts, with total number , are
the focus of our study. The state of part , at time

is represented by its “remaining life” which is a nonneg-
ative integer and degrades linearly from the “full lifetime”
when the asset is in service. Parts with different life reducing
rates are normalized to have the same rate with adjusted full
lifetimes. A part must be replaced immediately by a new one
when its remaining life becomes zero.

In addition to part expirations, a maintenance shop visit may
also be caused by an asset failure. Asset failures model the fail-
ures of those nonsafety critical parts and accidents such as bird
strikes for a jet engine. Thus the failure is independent of the
states of the safety-critical parts. For simplicity, the failure rate
is assumed to be a constant at each time unit. Let be a
random variable indicating whether the asset fails at or not
( or 0, respectively). The asset failure has a following
Bernoulli distribution:

(1)

The asset state at time is thus represented by a vector
; ), , and is within the state

space . It can be seen that the number of asset states (i.e.,
combinations of part remaining lives and the asset failure status

) increases exponentially with the number of parts
. Here, denotes the cardinality of the set argu-

ment. To reduce the number of states, will be removed from
the state vector when the problem is modeled by time aggre-
gated Markov decision processes in Section IV.

B. Asset Dynamics

The remaining lives of the parts degrade linearly with time
when the asset is in service. Suppose that the asset is in service

Fig. 2. In a maintenance shop, two parts are replaced jointly for an asset with
three modules:M ;M andM . Part a is replaced because of expiration, while
part b is close to expiration and replaced by opportunity to save cost. Replacing b
only needs to removeM , while bothM andM should be removed to replace
a.

at with state ; 0), then all parts’ remaining
lives decrease by 1 after one time unit as

and

(2)

Part expirations ( for some ) or asset failures
lead to shop visits. Let be the space of replacement ac-

tions, and , a subset of , represents the set of feasible
actions for a shop visit at . A feasible action
is a Boolean vector with the th element denoting whether part

is to be replaced or not ( or 0, respectively). Those
expired parts must be replaced, and other parts may or may not
be replaced, i.e.,

(3)

After maintenance, a replaced part will resume a full life ,
and those not replaced evolve from their current remaining lives,
i.e.,

(4)

with , for ;
; and .

C. Cost Structures

The maintenance costs have three aspects: the setup cost
for having a maintenance visits, module removal costs for
removing module , and new part costs
for replacing part . The setup cost occurs at
every shop visit and includes costs for asset downtime, trans-
portation, inspection, etc. The module removal costs depend on
the asset structure. For simplicity, an asset is assumed to have
a linear structure, and replacing parts of inner modules requires
the removal of outer modules. Fig. 2 illustrates that to replace
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the expired part in , both and should be removed. In
this case, a part (as part in Fig. 2) with nonzero remaining life
but close to expiration may be replaced to share model removal
costs and the setup cost. To mathematically model module re-
moval costs under this linear structure, modules from inner to
outer of the asset are ordered as ; and parts in an inner
module have smaller indexes than parts belonging to outer mod-
ules. Let represent whether module is
removed or not when is taken. Then

(5)

Therefore, the maintenance cost for a shop visit at time can
be calculated as

(6)

D. The Total Cost and Average Cost Performance Criteria

The above formulation is Markovian, i.e., at time , the state
transitions, transition probabilities and action costs are deter-
mined by the current state and action and are independent of
historical information. Thus the problem is a Markov decision
process (MDP). For the MDP, a policy is a mapping ,
where specifies an action for any state
at a shop visit. Two important performance criteria will be in-
vestigated: the finite horizon total cost (total cost for short) and
infinite horizon average cost (average cost for short).

The total cost criterion models the cases where an asset is
maintained by the asset owner over a predefined lifetime or by
a maintenance service provider over the term of a contract [2].
The problem is to minimize the expected total cost over a main-
tenance horizon

(7)

The optimal policies for (7) are generally nonstationary.
Namely, an optimal action depends not only on the asset state
but also on the time of the shop visit.

The average cost criterion models the cases of indefinite fu-
ture of asset lifetime or contract term. This performance crite-
rion has been widely investigated in the literature, e.g., [8], [12],
and [18]. The problem is to minimize the flowing long-run av-
erage cost as

(8)

In contrast to (7), the optimal policies for the average cost prob-
lems in (8) are stationary, i.e., the policies are independent of
time. It should be noticed that this average cost problem, as com-
pared with those problems in the literature, may be a multichain
MDP [16]. Namely, there exists a feasible policy leading to more

than one recurrent class within the state space. Consider a case
where that an asset with two identical parts is maintained by a
policy which only replaces the expired part. There are at least
two recurrent classes: two parts with same remaining lives and
two parts with different remaining lives. Multichain MDPs are
more difficult to address than unichain MDPs.

IV. OSA BASED ON TIME AGGREGATED

MARKOV DECISION PROCESSES

A. Overview

This paper addresses those difficulties of the problem pre-
sented in Section I by using a rollout optimization framework. In
this framework, Q-factors, which identify the goodness of fea-
sible actions for a state, are estimated to select an action for the
state at a shop visit. The estimates are achieved through Monte
Carlo simulations, which run a certain base policy on a simu-
lation model. Thus the optimization framework is an online ap-
proach, and is in essence a single step of policy iteration over
the base policy. Such a base policy is obtained from certain ef-
ficient heuristic method, e.g., OSA developed in this section or
the existing threshold method.

The average cost problem is analyzed in this section to
develop a computationally efficient and cost effective heuristic
method within the rollout framework. To achieve this goal,
traditional MDPs are briefly reviewed first. To reduce the com-
plexity, time aggregated MDPs [4] are introduced and applied
to our problem. The application is innovative for maintenance
problems and simplifies the analysis and computation as com-
pared with traditional MDPs. Although the time aggregated
MDP is still intractable for solving large problems, it helps
derive a new formula to compute the performance of a policy.
Based on this formula, OSA is developed to approximate
optimal policies through minimizing the expected average cost
over one maintenance period. The performance bounds derived
for single-part problems reveal the situations where OSA
achieves near-optimal performance. In addition, the policies
obtained by OSA are proved to share some common features
with optimal policies.

B. Markov Decision Processes

MDPs are used to characterize sequential decision problems
with Markovian properties. A classical algorithm for solving
MDPs is policy iteration which is based on the Bellman opti-
mality equation [16]. The core of this algorithm is a set of si-
multaneous linear equations, the so called Poisson equation [4]
(the index of is removed in view of the stationarity of av-
erage cost MDPs)

(9)

In the above, is the transition probability from
to when is taken according to the policy . The term
is the performance potential ([3], or relative value in [16]) which
signifies the goodness of a state under . After the variable
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Fig. 3. Controllable states marked with circles are picked from the original
Markov chain to form an embedded Markov chain. For our problem, the asset
states are controllable at shop visits. A segment is generated by the states be-
tween two successive shop visits.

is obtained by solving simultaneous linear (9) ([4] and [16]),
the policy is improved through the following step:

(10)

The policy iteration algorithm calculates and carries out the
policy improvement step (10) iteratively until an optimal policy
is obtained. This is intractable for practical problems with a
large number of states. Nevertheless, MDPs play important
roles on modeling the problem, characterizing optimal policies
and analyzing the performance of certain heuristic methods for
maintenance problems [15], [20], [22].

C. Time Aggregated Markov Decision Processes

To make MDPs applicable for large problems, recent studies
focus on exploring the problem structures by using e.g., state ag-
gregation or time aggregation. The time aggregation approach
applies to problems where some states are controllable and some
are not. The controllable states divide the original Markov chain
into segments. These states are picked out to form an embedded
Markov chain as illustrated in Fig. 3. The expected cost and
the length of a segment are aggregated to define a new cost
function for the embedded chain [4]. This is called time aggre-
gated MDP (TAMDP) which can be solved by using the corre-
sponding policy iteration algorithm.

The above time aggregated approach is well suited for our
problem in view that there is no need to make replacement de-
cisions when the asset is in service [23]. Thus considering state
transitions directly between shop visits instead of time units is
a more efficient and elegant way. Those states at shop visits,
denoted by , are selected to construct an embedded
Markov chain. For any state without part expirations, the
Boolean variable is restricted to 1, i.e., the shop visit must be
caused by an asset failure. For those states with part expi-
rations, the maintenance costs and state transitions are indepen-
dent of . Therefore, the symbol can be omitted for those states
by time aggregation. This reduces the size of the state space to
about a half, i.e., .

To obtain an aggregated MDP, the cost function of the orig-
inal MDP will be converted as follows. The expected length of
a segment, i.e., , is the expected time units from one

shop visit to the next when action is taken for . The ex-
pected total cost of a segment is simply the maintenance cost

at the shop visit. If the chain has a unique recurrent
class under , the performance of can be calculated by either a
long-run sample path defined in (8) or by the steady-state prob-
abilities of the states at shop visits [4]

(11)

In (11), is the steady-state probability of for the em-
bedded chain under . Following [4], the cost function for a
state in the aggregated Markov chain involves the ex-
pected cost and length of a segment

(12)

Based on above definitions, iteratively solving the Poisson
(9) and carrying out the policy improvement (10) results in a
policy optimal for both the aggregated and the original MDP
[4, Algorithm 1].

D. OSA Method

Although the number of states is reduced, TAMDP still suf-
fers from the combinatorial difficulty when an asset has many
parts and parts have large new lifetimes. In addition, either
MDP or TAMDP is complicated because the problem may
generate a chain with multiple recurrent classes as analyzed in
Section III-D.

Apply the Poisson equation (9) to the aggregated chain with
the cost function (12) and the transition probabilities among the
aggregated states calculated based on the failure rate and state
dynamics. Then the average cost the aggregated MDP will be 0
[4, Eq. 13], i.e.,

(13)

Therefore, a new formula for calculating the performance of
can be derived as

(14)

Instead of minimizing the average cost to obtain an optimal
policy, OSA, is developed to minimize the first term on the right
side of (14) as a heuristic method for large problems. OSA se-
lects an action for any as

(15)

where

(16)

It can be seen that OSA minimizes the ratio of the cost to the
expected length between two subsequent shop visits. Similar
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idea can be found for other maintenance problems in the lit-
erature, e.g., minimize the “cost rate” in [18] for preventive
maintenance.

E. Characteristics of OSA

From (14)–(16), it can be seen that OSA approximates the op-
timality equation of TAMDPs through dropping the effect of po-
tentials . The approximation works well when optimal poli-
cies result in similar potential values for different states so that
the second term on the right of (14) has little effect to the per-
formance. To illustrate this, consider an extreme case where the
optimal policy replaces all the parts at every shop visit (this may
be true if the setup cost is very high). This results in the same
action cost and state transitions for all states. Therefore, poten-
tials are identical for all the states in TAMDP according to (13).
Then the second term on the right of (14) is zero and OSA ob-
tains optimal policies. For general cases, the performance and
the policy structures obtained by OSA are analyzed below.

1) Single-Part Problems: To obtain insights about the situ-
ations where OSA performs well, single-part problems will be
investigated first. Since the asset has only one part, an optimal
policy for such a problem replaces the part at shop visits when
its remaining life is less than a threshold [20]. Based on this
simple structure of optimal policies, the performance bounds of
OSA are derived as follows.

2) Proposition 1: For a single-part problem, let be the av-
erage cost obtained by OSA, and be the optimal performance,
then

(17)

In the above, is the full lifetime and is the part cost. The
detailed proof is provided in Appendix A.

Proposition 1 shows that OSA achieves near optimal perfor-
mance especially when the failure rate or the ratio of part cost to
setup cost is low. This will also be demonstrated in Section VI
on multipart problems for which the performance bounds cannot
be analytically obtained.

3) Multipart Problems: The optimal policies for multipart
problems have irregular structures ([15], [17]). Nevertheless,
two necessary conditions on optimal policies have been known.
The first is “Shortest Remaining Life First Rule [23],” which
states that optimal policies always first replace those parts who
have less remaining lives than other parts, i.e., the following.

4) Necessary Condition 1: If and belong to the same
module and then .

This condition presents a feature of an optimal action for each
state. The second condition, modified from item of [15, The-
orem 5] for our model, deals with the relations among actions
for different states. The intuition of this condition is that if a part
is replaced according to an optimal action for a state, then the
part should also be replaced in a “worse” state. Let
be the set of parts that are replaced according to , i.e.,

; and . Then the formal
description of the condition is as follows.

Necessary Condition 2: Suppose that and are
actions for and according to optimal policies. If

for for ; then
.

Both conditions listed above are intuitively plausible. We
have the following proposition, and the proof is provided in
Appendix B.

Proposition 2: The actions obtained by OSA satisfy Neces-
sary Conditions 1 and 2.

V. IMPROVE HEURISTIC METHODS BY

THE ROLLOUT ALGORITHM

In the second phase of our optimization framework, the
rollout algorithm [1] is used to improve the policies obtained
by OSA or the threshold method. The improvement is achieved
by a single step of policy iteration that minimizes Q-factors.
Since the rollout algorithm is originally developed for total
cost problems, this section will develop Q-factors based on
the “potential [3]” to address average cost problems. Since
Q-factors are random variables, they are estimated by Monte
Carlo simulations. Several methods will be used to alleviate the
computationally intensive burden.

A. Definition of Q-Factors

The policy improvement procedure in (10) is based on the
potential obtained by solving the Poisson (9). As the asymptotic
relative difference in total cost between starting the process from
a particular state and from the steady-state distribution, the po-
tential may also be calculated based on sample paths ([3] and
[16])

(18)

Employing the potential, a Q-factor is defined for a state to iden-
tify the goodness of a feasible action

(19)

By (18) and (19), the following equation holds according to the
strong law of large numbers:

(20)

In the above, is the number of replications and is the time
horizon of sample paths. The symbol represents the real-
ization of uncertainties, i.e., random failures for our problem on
the th sample path (or scenario) at each time unit.
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B. Rollout Algorithms for Total Cost or Average Cost MDPs

Policy iteration aims at achieving an optimal policy, and min-
imizes Q-factors for all the states to improve a policy in each it-
eration. This is intractable for problems with large state spaces.
To address large problems, the rollout algorithm relaxes the goal
by improving an existing policy for the states encountered. The
improvement is conducted by estimating Q-factors through sim-
ulations. The simulation takes the action to be evaluated for
at , and then follows the existing policy thereafter, i.e.,

(21)

The look-ahead horizon in simulations is truncated, and is a
parameter instead of approaching infinity as in (20). The sample
mean of a Q-factor is calculated by repeated simulations

(22)

The rollout algorithm selects the action that attains the minimal
sample mean of Q-factors

(23)

Note that is not calculated in (22) as in (20) because it is a
constant and does not affect the comparisons among actions in
(23).

The rollout algorithm is in essence a single step of policy it-
eration as (10). From (23), it can be seen that only costs at each
time unit are calculated based on sample paths, while the exact
information of the underling model, e.g., the transition probabil-
ities among states, is not necessarily known. This is the advan-
tage of the rollout algorithm. To reduce the variances of the com-
parisons of Q-factors, the simulations are run with “common
random numbers” [13], i.e., using the same for different ac-
tions. In our problem, Necessary Condition 1 is applied to the
algorithm to cut the number of actions without loss of perfor-
mance for the policies obtained. The base policy may be ob-
tained by either OSA or the threshold method.

For total cost MDPs, the Q-factor is defined as the immediate
cost plus the cost-to-go [1], as opposed to the immediate cost
plus the expected potential as in (19) for average cost MDPs.
Although based on different concepts, the algorithms are similar
in implementation. Since the state dynamics and cost structures
are the same, the only difference is the look-ahead horizon
in (21) for simulations. For total cost MDPs, simulations look
ahead to the end of the maintenance horizon , i.e., is com-
puted according to current time as . In contrast, for
average cost MDPs, is a truncated parameter which is used
to approximate potentials defined by infinite-long sample paths
as in (18). Although there is no guideline, our numerical exam-
ples demonstrate that can be readily chosen for average cost
MDPs to achieve good results.

C. Improve the Efficiency of the Rollout Algorithm

The rollout algorithm estimates Q-factors through repeated
Monte Carlo simulations running a base policy. The estimation

accuracy (e.g., the confidence interval) improves slowly and no
faster than [6], [11]. However, it can be seen from
(23) that the key of the algorithm is to correctly determine the
orders of Q-factors. From another point of view, the rollout al-
gorithm approximates the true ranks of Q-factors by a crude
model. This is because the base policy is obtained by a heuristic
method, while a “precise model” employs an optimal policy as
the base policy. Therefore, both the order comparison and the
use of crude model for the rollout algorithm are consistent with
the tenets of ordinal optimization [11]. By ordinal optimization,
it is much easier to determine “order” than “value.” The order
converges exponentially as compared with the slow convergence
of value [11]. By incorporating the concept of ordinal optimiza-
tion, our idea for the rollout algorithm is that there is no need to
estimate Q-factors precisely by excessive simulation runs.

Besides the idea of ordinal optimization, the simulation
can be made more efficient by using the “optimal computing
budge allocation” (OCBA) [6] technique. Rather than directly
performing the same number of replications , more replica-
tions may be conducted for those promising actions with small
sample means of Q-factors. This improves the correctness
of the final selection. In addition, the simulations to estimate
Q-factors have intrinsic parallelism. Except for actions, other
ingredients are the same, e.g., the current state, simulation
model and the uncertainties realized based on common random
numbers. Thus the program can be easily implemented by
using parallel simulation in the Single Program Multiple Data
fashion.

VI. NUMERICAL RESULTS

OSA and the rollout algorithm developed in Sections IV and
V have been implemented using the programming language

and tested on a PC with Pentium IV 2.0 GHz CPU, 512 Mb
RAM, and Windows XP OS. For comparison purpose, the gen-
erally used fixed-threshold method has also been implemented.
Extensive numerical testing has been conducted. Three exam-
ples are presented below and each examines several problem
variations. The first example tests Proposition 1 of Section IV
for OSA by two-part small problems for which optimal poli-
cies can be obtained by TAMDP. The second example exam-
ines the performance of the rollout algorithm under several pa-
rameter settings for both total cost and average cost criteria
with medium-sized problems. The effectiveness of OSA and the
rollout algorithm is demonstrated. The third example demon-
strates the effectiveness and the computational efficiency of the
overall rollout optimization framework for large problems by
using a semi-realistic data set. Remarks on the two types of cri-
teria are provided based on the results obtained.

Example 1: Consider a simple example where an asset has
two modules and each module has only one part. Since the per-
formance bounds of OSA are obtained for average cost MDPs,
this example tests OSA with the objective to minimize the av-
erage cost. Although the problem is small, it has irregular struc-
tured optimal policies as large problems [15] and [17].

The average costs obtained by OSA for problems with dif-
ferent setup costs and failure rates are compared with the op-
timal costs obtained by using TAMDP as presented in Table I.
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TABLE I
COMPARE THE PERFORMANCE OF OSA WITH OPTIMAL POLICIES

TABLE II
TOTAL COSTS FOR PROBLEMS WITH MAINTENANCE HORIZON

T = 300 AND 500

The results demonstrate that OSA obtains near or even true op-
timal costs (e.g., and ) es-
pecially for situations where the failure rate or the ratio of part
costs to setup cost is low. Therefore, this multipart example also
exhibits the property of Proposition 1 for OSA.

Example 2: An asset has three modules and each module
consists of two parts. The full lifetimes of these six parts range
from 30 to 70 time units. It is hard to obtain optimal policies by
TAMDP because the number of states is large. OSA
and the rollout algorithm are tested under different replication
number for total cost problems, and tested under different
and for average cost problems.

Testing Total Cost Problems: Two maintenance horizons of
300 and 500 are considered. Since total costs depend on initial
states, Table II summarizes the means and standard deviations of
the total costs for 100 samples with randomly generated initial
asset states. For easy comparison with average cost problems,
the means of total costs are divided by and shown as average
costs over the maintenance horizons. The results show that OSA
performs much better than the threshold method. Since OSA it-
self has achieved near optimal performance, the improvement of
the rollout algorithm for OSA is not as significant as that for the
threshold method. Take the case of for example. OSA
achieved 0.643, which is significantly less than 0.696 obtained
by using the threshold method. These two costs decreased to
0.619 and 0.623, respectively, by rolling out the corresponding
policies. As pointed out in Section V-C, Table II reveals that

TABLE III
AVERAGE COSTS OF THE ROLLOUT ALGORITHM

BASED ON THE THRESHOLD METHOD

TABLE IV
TESTING METHODS BY SEMI-REALISTIC DATA SET FOR TOTAL COST

there is no need to estimate Q-factors precisely by excessive
simulation replications: good enough results can be obtained
with only 20 replications for all the four cases tested.

Testing Average Cost Problems: Since the improvement for
the threshold method by the rollout algorithm is significant as
observed in Table II, the threshold method is used by the rollout
algorithm to investigate the effects of parameters and . The
maintenance horizon is set to be 500 000 time units, which is
long enough to approximate infinite horizon for this problem.
The average costs obtained are summarized in Table III. It can
be seen that the costs may not decrease by increasing or
alone. The reason is that a short look-ahead horizon is short
sighted. However, long look-ahead horizon with small replica-
tion number may lead to large estimation variances of Q-fac-
tors. Nevertheless, the rollout algorithm drastically improves the
base policy under most settings of and .

Example 3: Consider a semi-realistic data set provided by
the United Technologies Research Center in conjunction with
Pratt & Whitney. A jet engine has three modules, which consist
of 3, 7, and 10 safety-critical parts from inside to outside. The
full lifetimes of these 20 parts range from 50 to 140 time units.
The problem has been tested under both total cost and average
cost criteria. Two failure rates of 0 and 0.015 are tested. When

, the problem is deterministic and a Q-factor can be
computed perfectly by only one sample path . When

, each Q-factor is estimated by 100 sample runs.
Testing Results for the Semi-Realistic Data Set: For the total

cost criterion, the sample means and standard deviations of the
total costs over 1000 maintenance horizon are summarized in
Table IV based on 50 simulation runs starting from randomly
generated initial states. Under both failure rates, the results in
Table IV show that OSA significantly outperforms the threshold
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TABLE V
TESTING METHODS BY SEMI-REALISTIC DATA SET FOR AVERAGE COST

method. The rollout algorithm drastically improved the perfor-
mance of the base policies obtained by using either OSA or the
threshold method.

For the average cost criterion, the performance is evaluated by
a sample path with a long enough maintenance horizon, which
consists of thousands of shop visits. In the interest of the compu-
tational efficiency, the rollout algorithm employs a base policy
obtained by the threshold method. Similar to the results in Ex-
ample 2 for middle-scale problems, the long-run average costs
in Table V obtained by the methods are close to the time unit
costs in Table IV for total cost problems.

CPU Time of the Methods: The CPU time required to obtain
an action for a state is provided in Table IV. For the threshold
method, the time is spent on the exhaust search for an optimal
threshold by a number of sample paths (100). For the total cost
problem with , it takes 40 seconds to obtain the
threshold. Given an optimal threshold, the action for a state is
obtained by comparing the remaining lives of the parts with the
threshold. In contrast, OSA chooses an action for a state ac-
cording to (15) at every time unit. This takes about 0.0002 sec-
onds in this example. Accordingly, the CPU times required by
the rollout algorithm are different under variant base policies.
When and , the CPU times for the rollout
algorithm based on the threshold method and OSA are 1 and 50
min, respectively. The CPU times for large problems demon-
strate that the effective rollout framework is computationally
acceptable.

Remarks: For total cost problems, the “parallel rollout algo-
rithm” [5] employs several base policies to estimate Q-factors
separately and select the smallest Q-factor. For some cases, the
parallel rollout algorithm may achieve a better policy than any
policy obtained by rolling out one single base policy as shown in
[5]. We have implemented the parallel algorithm with base poli-
cies obtained by OSA and the threshold method. In our exper-
iments, almost all the smallest Q-factors in the parallel rollout
algorithm are obtained under base policies obtained by OSA.
Thus the parallel rollout algorithm achieves the same results as
the rollout algorithm based on OSA.

For average cost problems, the rollout algorithm is devel-
oped under the assumption that only one recurrent class exists
under all feasible policies for the MDP. However, our problem
is essentially a MDP involving multiple recurrent classes, as has
been analyzed. Although the application is flawed, the algorithm
results in performance improvement for the rollout algorithm as
demonstrated in Examples 2 and 3.

VII. CONCLUSION

The main contribution of this paper is to model and address a
new joint replacement problem with life-limited parts. Our OSA
and the overall optimization framework are cost effective and

computationally efficient as demonstrated by numerical testing
results. The results also reveal that the optimization should use
the rollout algorithm to improve heuristic methods if CPU time
is not a critical issue. An interesting result is that the policies ob-
tained by the threshold method, although may be much worse
than those policies obtained OSA, can be significantly improved
by the rollout algorithm. Thus the cost savings may be signifi-
cant in view of the wide application of the threshold method in
practice.

The simulation based rollout algorithm is flexible to address
some variations of our problem through incorporating them into
the simulation model. These variations, for example, may be
nonconstant failure rate of the asset or have constraints on the
asset conditions at the end of a contract, e.g., the remaining lives
should be above some levels. The framework can be extended to
those maintenance problems in the literature. In fact, threshold
type policies are generally used for those problems and can be
similarly improved by the rollout algorithm as done in our paper.

APPENDIX A

Proposition 1: For a single-part problem, let be the av-
erage cost obtained by OSA and be the optimal performance,
then

(24)

In the above, is the full lifetime and is the new part cost.
Proof: To get the performance bounds, the effect of the

second item on the right side of (14) is examined first. For a
single-part problem, there are only two actions (not replace)
and (replace). The asset state at a maintenance decision
time may be . For state 0, the only feasible action
is . When (12) is used as the cost function of the aggregated
chain, by the optimality of the policy [16]

(25)

The expected length of the next shop visit is larger than
for any . In addition, it is easy to prove that

if based on (14) and the optimality. Thus by the
definition of transition probabilities and (25)

(26)
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OSA chooses action as

(27)

Let be a row vector of the steady-state probabilities of the
aggregated Markov chain under the policy obtained by OSA.
By (11) and (27), the performance of OSA is

(28)

Obtain from (14), then

(29)

Therefore, by (26) and (28)

APPENDIX B

1) Proposition 2: The actions obtained by OSA satisfy Nec-
essary Conditions 1 and 2.

Proof: The actions obtained by OSA satisfy Necessary
Conditions 1 can be proved by contradiction as follows. Let
be the action for part according to obtained by OSA. If
there exist and satisfying that and .
Then choose an action as: for , and .
Thus , while ,
thus . This contradicts with (15).

For and , if the assumption of Necessary Condition 2
hold, then and [by definition of
in (3)]. Let denote taking action for in (16). For
any

(29)

The first equality is obtained by the assumption in Necessary
Condition 2. The first inequality follows the definition of OSA
in (15). The second inequality is obtained by (16) noticing that

for the same . Thus the actions ob-
tained by OSA satisfy Necessary Condition 2.
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